

MICRO APPLICATIONS

TRS-80 DISC INTERFACING GUIDE

Micro Applications
24232 Tahoe Court

Laguna Niguel, CA 92677
(714) 831-7004

Copyright (C) 1978 by William Barden,Jr.
24232 Tahoe Court
Laguna Niguel, CA
92677

All rights reserved. Reproduction of
any material contained herein without
written permission from the author is
prohibited, The author assumes no re-
sponsibility for accuracy of hardware and
software descriptions in this text, nor
in implementation of ideas expressed
herein. All material is believed to be
accurate.

MICRO APPLICATIONS

TRS-80 DISC INTERFACING GUIDE

 TABLE OF CONTENTS

Chapter 1.

Chapter 2.

Disc Basics

Shugart SA400

Page 5

Page 9

Chapter 3. Western Digital FD1771B-01 Page 15

Chapter 4. Expansion Interface Page 27

Chapter 5. Disc Programming Page 33

Appendix A. FD1771B-01 Commands for
TRS-80 Page 44

Appendix B. Disc Format for TRS-80 Page 45

" .1

 5

 5

Chapter 1

Disc Basics

This text describes the operation of the Shugart SA400 Mini-
floppy Disc Drive in the Radio Shack TRS-80 Microcomputer System. It
is divided into five chapters. The first chapter, Disc Basics,
describes the general operation of minifloppy discs. Chapter 2,
Shugart SA400 operation, describes the operation of the disc drive
itself in terms of interface signals and functions. The next chapter
is concerned with operation of the Western Digital FD1771B-01 Floppy Disc
Formatter/Controller Chip used in the TRS-80 Expansion Interface.
Chapter 4 shows how the Expansion Interface decodes disc addressing
and commands. The last chapter shows how Radio Shack software
communicates to the disc and how one may do machine language (assembly
language) and limited BASIC-level programming of disc systems.
Appendices provide related material, such as controller commands and
disc format.

A floppy disc system is made up of the disc drive or drives
themselves, a controller, and the microcomputer. In our case the
microcomputer is the Radio Shack TRS-80, the controller is the Western
Digital FD1771B-01, and the disc drive is the Shugart SA400, A block
diagram of the TRS-80 disc system is shown in figure 1. As with other
units in the TRS-80 system, the cpu communicates over 16 address lines,
A15 through A0, eight data lines, D7 through DO, and a set of control
lines that specify whether reading or writing and other functions are
being performed. The controller for the disc(s) interprets commands
sent to it over the data lines and translates these commands into disc-
type commands that the Shugart SA400 can recognize. The single chip
controller is a 40-pin chip that is effectively a microcomputer in
itself, and replaces a hundred chips or so for a TTL design! Commands
are sent to the disc drive by the controller chip to perform functions
for head positioning and reading and writing, and the "status" of the
drive is returned back to the controller chip. We'll be talking about
the operation of each of these component parts in future chapters, but
for the time being let's concern ourselves with how the data is stored on
the "diskette" and some of the physical attributes of the diskette and
disc drive.

Figure 1. TRS-80 Disc

When the disc drive is mentioned in this text, we'll refer

to the "disc" or "drive" or "disc drive". When the recording media is
mentioned, the term "diskette" will be used. The diskette used in the
Shugart SA400 is basically a 5 1/4 inch diameter flexible or
"floppy" diskette made up of a plastic coated with a magnetic oxide
similar to that used for recording tapes. The diskette fits in a
square holder for protection and ease of storage. The square holder
fits inside the SA400, which is really only a device that spins the
diskette and moves a recording head along a radius while the disc is
spinning, along with associated electronics to read and write data.
The recording head reads flux changes or produces flux changes for
writing, similar to a tape recording head. Other disc electronics
control head positioning, protection of the diskette from writes, and
other functions.

The diskette spins at 300 revolutions per minute. As the diskette
revolves, the head can be moved along a radius towards the center or
back again in small increments. Each discrete position position over the
diskette defines a "track" as shown in figure 2. There are 35 tracks
for a Shugart SA400, and therefore 35 valid positions along the radius.
When the head is positioned along the radius over a track it can read
the data along the concentric circle defined by the track. This circle
is divided into ten "sectors", each occupying 1/10 of the circumference
of the track. The circumference of the innermost circles or tracks are
obviously less than the outermost tracks, but the content of the tracks
are the same, although the data is packed a little more tightly into the
innermost tracks.

TRACK 15, SEC 7

Figure 2. Diskette
Once positioned over a track, sector 0 can be sensed by a small

sector index hole in the diskette which causes a signal to be generated
by the disc when the index hole passes five times per second.

Each sector on the disc holds 256 data bytes. The entire track can
hold 256*10 bytes, or 2560 bytes of data. As there are 35 tracks the
entire diskette can hold 89,600 bytes of data. This data is recorded in
serial fashion along the track, so that one track holds
2560*8 bits of data, or 20,480 bits along the circumference. Data
recorded along every track, then, can be viewed as a long string

of data bits, starting from sector 0 of the track and ending at
data bit 2047, the last data bit of sector 9. In addition to the data
stored in a sector "record", however, there are other bit patterns
that are not user data. This data identifies the sector address,
defines a "gap", stores a checksum of user data, and contains other
relevant data pertaining to reading and writing the sector. This data
must be put on the diskette by a special "formatting" process prior to
user data being stored on the diskette. One can look at the formatting
process as supplying a skeletal set of records with proper sector gaps
and identification data, and large unused areas awaiting user data.
The formatting process and actual track format is described later in
this text.

If data is to be read or written to a sector, the head is
first positioned over the proper track, 0 through 34. Information
about where programs or data are to be found on the diskette must
be maintained by the system user in a software "directory" that con-
tains a file name and track and sector address, along with other par-
ticulars Track positioning is called a "seek" operation, and takes
about 25 milliseconds (1/40 second) to go from track to track, a little
under a second to go from track 0 to track 34 (worst case), and about
450 milliseconds for the average seek that must traverse about 1/2 of
the number of sectors.

Once the head is positioned over the proper track, the desired
sector can be read. Prior to sector read (or write) the program passes
a sector address (0 through 9) to the disc controller, just as it had
previously passed a track address before the seek. The disc controller
senses when the proper sector spins under the head by detecting the
index hole and identification data from the diskette. if the sector has
just passed the head when the sector read or write command is given,
than the time required to read or write the sector is about one
revolution time plus 1/10th of a revolution time for the read or write.
As the diskette is spinning at 5 revolutions per second, this worst
case "sector latency" will be about 220 milliseconds. The average
access for reading or writing to a sector is about 1/2 revolution or
1/10th of a second. Once positioned over the proper sector, data is
transferred at 2560 bytes per revolution, or about 12,800 bytes per
second for user data. (The actual data transfer rate is closer to
15,625 bytes per second because both user data and identification data
is being read.)

The "average access" for records dispersed all over the diskette
would be the average seek time + average sector time + data time, or
about 450 msec + 100 msec + 20 msec = 570 msec per 256-byte sector, or
roughly 1/2 second. The average access for data accessed
"sequentially" in adjoining sectors and tracks would be about 100 msec
(basically average sector access time) for processing of 256-byte
records. Quite a change from 500-baud (50 characters per second)
cassette tape!

Another factor to consider in computing access times is motor
turn on time. When an I/O operation is performed the disc drive motor
must first be turned on and brought up to speed. This takes less than a
second. If a series of I/O operations are to be performed,

the motor is kept on by continuously "selecting" the drive, so that
the one second turn on time occurs only at the beginning of the set
of operations. If the operations occur greater than about three
seconds apart, however, the motor must be turned on for each set of
operations.
 Data is normally read and written one sector at a time, although
it is possible to read 1 to 10 sectors worth with one command. Checks
are provided for valid data, positioning errors, and other "disc
status" as in any complicated I/O device.
 Each diskette square holder has a small notch cutout that can be
covered over with a label or tape. When this is done the diskette is
"write protected' and data can be read from, but not written to, the
diskette.

The TRS-80 permits up to four drives to be connected to the Ex-
pansion Interface box with one cable. These are numbered (in Radio
Shack's infinite wisdom) as "1", "2", "3", and "4". Disc 1 always
contains a diskette with the TRS Disc Operating System (or TRSDOS) and
utility programs on the first 34K bytes of the disc, or so. The
"default" drive is disc drive number 1 for commands that do not specify
a drive number, and the "bootstrap" program is also contained in sector
0, track 0 of the diskette in drive 1.
 Now that we've seen in general how disc storage functions, we'll
continue by discussing the Shugart SA400 in the next chapter, followed
by the controller chip, addressing, and disc programming.

Chapter 2

Shugart SA400

This chapter will describe the Shugart SA400 disc drive as

used in the RS TRS-80. The SA400 drive is essentially unmodified
internally by Radio Shack, the exception being minor addressing mods
and a terminator that is connected to a dip socket on the disc el-
ectronics board. This terminator is connected only in drive number 1,
hence the difference in the two types of drives supplied by RS. The
SA400 requires power supplies of +12V and +5VDC. These are installed
on the rear of the RS cabinet for the drives (the cabinet or cover is
another optional item). Initially RS had a problem
with heat disipation for the drive power supplies, but this has been
alleviated somewhat in later discs, although the drives still run
somewhat hot at this time of writing. Cabling is also supplied by RS
and is discussed later in this text; the cable is a simple ribbon
cable.

Another point that should be mentioned here is that the Shugart
SA400 has become something of a de facto standard for minifloppy disc
drives. Several other manufacturers make drives that are presumably
plug-to-plug compatible with the SA400 and could be used in place of
the SA400.

Physical Data
The SA400 is very compact, so much so that many microcomputer

manufacturers have installed the entire drive in existing cabinetry
to provide a disc system. The drive measures 5 3/4 inches high by 3
1/4 inches wide by 8 inches deep (plus power supply). Weight is about
three pounds. There are two basic assemblies in the SA400, the drive
mechanism itself, and a printed circuit board associated with head
electronics and interfacing. The drive mechanism uses a dc drive
motor with a servo speed control and integral tachometer. The motor
rotates a spindle through a belt drive system. The drive has a
mechanical interlock on a door latch to ensure that the diskette is
properly inserted.
 The read/write head is a ceramic head which is mounted on a head
assembly. The head assembly is positioned through the use of a spiral
cam. The cam is driven by a stepping motor that positions the cam and
head by rotating the cam in discrete increments (if you're like me
you're falling asleep by now - pull off the disc cover, and you will
immediately see the mechanism by which the head assembly is stepped
from track to track. It's better than a long description, although I
don't want to offend any mechanical engineers out there).

PCB Electronics

The printed circuit board assembly contains electronics to
perform the following functions:

1. Detect the sector index mark in the diskette
2. Position the head to the proper diskette track
3. Load the head (press the diskette against the
 read/write head in preparation for reading and

 writing.
4. Generate signals in the head to write data or read flux
 changes from the diskette, including merging data and
 clock signals.
5. Detect the write protect condition.
6. Detect when the drive is selected.

The functions above are uncomplicated, with the exception of

the read and write data function. Data written to the diskette is merged
with a clock signal. When the combined data/clock signal is read from
the diskette the clock and data must be separated by special circuitry.
In this case the circuitry is contained in the WD FD1771B-01 chip,
along with circuitry to create the merged clock/data. The effect of
merging the data and clock is to produce a pulse train that is
frequency modulated. Whenever a one bit is generated, two pulses result
during a clock cycle, while only one pulse is generated for a zero bit. A
typical string of data read from a diskette is shown in figure 1. The
recording method is shown for information only, as one should never have
to deal with data at this raw level, unless possibly troubleshooting an
inoperative disc drive.

Figure 1. Data Recording

Control Signals

The standard Shugart SA400 interface signals are shown in table 1
below. These are the signals that are present on the disc drive pc
board connector that attaches to the TRS-80 cabling. We will discuss
these signals in general initially, without regard to the TRS-80, and
describe in chapter three how they relate to the FD1771B-01 controller
chip (or vice versa).

Controller to Disc Disc to Controller

SELECT 0 INDEX

SELECT 1 TRACK 0
SELECT 2 WRITE PROTECT
SELECT 3 READ DATA
DRIVE MTR ENABLE
DIRECTION STEP
WRITE DATA
WRITE ENABLE

Table 1. SA400 Interface Signals

Assume the disc is off. When power is supplied and signal DRIVE

MOTOR ENABLE goes low, the drive motor "comes up" to a speed of 300
revolutions per minute and stabilizes at this speed in less than one
second. When this signal goes high, the drive motor stops in less than
a second. In the TRS-80, the motor is normally off and is only turned
on for reading and writing.

The DIRECTION and STEP signals are outputs to the disc that

control the stepping of the drive head, If DIRECTION is low and a
STEP pulse is issued, the head will step over towards the center
of the disc by one track. If DIRECTION is high and a STEP pulse is
issued, the head will step one track away from the center of the disc.
Obviously, to step from the outermost track (0) to the innermost track
(34) requires 34 step pulses. Each STEP pulse goes from high to low
for a duration of 200 nsec (200 billionths of a second) to 2
millisecond (2 thousands of a second).

The INDEX signal is an output from the disc drive that appears
as a pulse every 200 msec at the beginning of a track. It is gen-
erated by the appearance and detection of the index hole in each
diskette five times per second.

Signal TRACK 0 is another output from the disc indicating that
the head is positioned over the outermost track, track 0. Track 0
causes signal TRACK 0 to go low.

Signal WRITE PROTECT is low whenever an opaque label is put over
the diskette write protect notch. This signal informs the controller
that writing data to the disc is not possible.

Signals SELECT 0 through SELECT 3 are used to select one of
four drives. The drive number within the SA400 is determined by a dip
shunt. In the TRS-80, however, selection is determined by position
along the cable, and if SELECT 0 is low drive 1 is selected, if SELECT
1 is low drive 2 is connected, and so forth.

Reading and Writing

The normal sequence before reading or writing data is to turn on
the drive motor and to then position the head by STEPping until the
head is positioned over the desired track. Now data can be read or
written after the motor reaches full speed (one second) and the desired
sector appears under the head. The controller chip issues the proper
number of STEP commands in the proper DIRECTION to position the head
and may also control DRIVE MTR ENABLE, although this is not done in the
TRS-80 (addressing the disc turns on the motor for a period of time).

When a write is to be performed, the WRITE ENABLE line must

first go low to signal the drive that a write will be taking place.
The current in the head is turned on by the WRITE ENABLE signal in
preparation for the write. Writes cannot be performed unless WRITE
ENABLE is low. t

Data to be written is sent to the disc via the WRITE DATA line.

Each high to low transition on this line causes a magnetic flux change
in the read/write head. The recording technique used is the previously
described frequency-modulation type (double frequency) in which data
and clock form a combined WRITE DATA signal.

Data being read is sent from the disc by means of the READ
DATA line. A data pulse is sent for each flux transition on the
diskette.

Both read and write data appears as a series of serial pulses.
The controller performs a serial to parallel transformation in data
read from the disc and a parallel to serial transformation for data
written to the disc.

In essence, then, there are really not many things that the disc
can do. It can only step one track at a time in one direction, write a
data pulse, read a data pulse, and report back on the status of the
index mark, track 0 position, and write protect. All of the other
functions such as reading a sector, formatting, writing a sector,
stepping more than one sector to a given track, and finding a given
sector must all be implemented in external (to the disc) logic. In the
next chapter we'll see how the floppy disc controller implements these
functions and others.

The following table recaps disc signals, lists their pin numbers
for the SA400 connector and the TRS-80 cabling, and cross references
the Shugart name with TRS-80 terminology.

SHUGART PIN#, SIGNAL NAME TRS-80 CABLE PIN, SIGNAL NAME

1 spare 1 gnd

2 spare 2 not used
3 spare 3 gnd
4 spare 4 not used
5 spare 5 gnd
6 spare 6 not used
7 gnd 7 gnd
8 INDEX 8 INDEX PULSE
9 gnd 9 gnd
10 SELECT 0 10 DS1
11 gnd 11 gnd
12 SELECT 1 12 DS2
13 gnd 13 gnd
14 SELECT 2 14 DS3
15 gnd 15 gnd
16 DRIVE MOTOR ENABLE 16 MOTOR ON
17 gnd 17 gnd
18 DIRECTION 18 DIRECTION SEL
19 gnd 19 gnd
20 STEP 20 STEP
21 gnd 21 gnd
22 WRITE DATA 22 WRITE DATA
23 gnd 23 gnd
24 WRITE ENABLE 24 WRITE GATE
25 gnd 25 gnd

SHUGART
PIN#

SIGNAL NAME TRS-80 CABLE PIN, SIGNAL NAME

26 TRACK 0 26 TRACK ZERO
27 gnd 27 gnd
28 WRITE PROTECT 28 WRITE PROTECT
29 gnd 29 gnd
30 READ DATA 30 READ DATA
31 spare 31 gnd
32 spare 32 DS4
33 spare 33 gnd
34 spare 34 not used

Table 2. SA400/TRS-80
Signals

Chapter 3
Western Digital FD1771B-01

The WD FD1771B-01 is a 40-pin floppy disc controller chip that

enables the TRS-80 to issue simple commands for head positioning and
reading and writing of data. The controller chip then performs the
complicated timing functions for implementation of these commands. The
commands that may be issued to the FD1771B-01 are:

1. Restore. Move the head to track zero.
2. Seek. Find the currently specified track,
3. Step. Step the head in the last direction.
4. Step In. Step the head one track in.
5. Step Out. Step the head one track out.
5. Read. Read one byte of user data.
7. Write. Write one byte of user data.
8. Read Address. Read ID field.
9. Read Track. Read entire track,
10. Write Track. Write entire track,
11. Force Interrupt. Terminate operation.

Data to be written to the disc is transferred from the TRS-80
to the FD1771B-01 in parallel, 8 bits at a time. Data to be read from the
disc is assembled from bit serial data from the disc into 8-bit bytes and
then sent to the TRS-80 in Parallel. In addition to serial/parallel
conversion for data, the FD1771B-01 also receives parallel data related
to head positioning for the disc. All parallel data, whether commands or
user data, is sent to the FD1771B-01 over the eight-bit data bus from the
TRS-80 cpu, D7 through D0. Every time a byte of data is sent over the data
bus, the disc controller must first be addressed by performing a "load
instructs on" for a read from the controller, or a "store instruction" for a
write to the controller. Addressing and transfer of data to the
disc controller will be explained in more detail in the following two
chapters.
 The FD1771B-01 contains several registers for positioning and disc
data. They are shown in figure 1 below.

Figure 1. FD1771B-01
15

Tracks on the SA400 are numbered from 0 (outermost) to 34

(innermost). The track register is an 8-bit register that holds the
current track number. Every time the disc head is stepped, the track
register is automatically incremented or decremented to reflect the
current track position. The track register may be read or loaded by a
"load" or "store" instruction in the Z-80.

The sector register is an 8-bit register that holds the current
sector number. As the ten sectors rotate under the head, the sector
register is adjusted to hold the current sector number. The sector
register may be read or loaded by a "load" or "store" instruction in
the Z-80.

The command register is an 8-bit register that holds one of
the eleven possible commands that may be issued to the FD1771B-01. The
status register is an 8-bit register that holds status information from
the disc. The status in the register varies with the command, but
represents such typical conditions as "track 0", "disc busy", and "disc
protected".

An 8-bit data register holds data that is read from the disc
or is to be written to the disc. This register interfaces to another
data register, the data shift register, that converts the parallel
TRS-80 data into serial form.

Other logic in the FD1771B-01 is concerned with separating the
data from the clock signal (data separator), arithmetic within the
disc controller (arithmetic and logical unit), and control logic.

Clock Signal

The clock signal for the FD1771B-01 is a 1.0 mhz square wave
input to the disc controller. The clock is used to control internal
device timing and is also used to generate clock and data pulses sent
to the disc for writes.

Power Supply Signals

The FD1771B-01 requires +12 VDC, +5 VDC, and -5 VDC.

FD1771B-01 to Disc Signals

The signals described under the SA400 are shown below, referenced
to their FD1771B-01 signals. The FD1771B-01 signals perform the same
functions as previously discussed. There is no chicken/egg debate here
as the disc signals were defined before the controller; the controller
is designed to easily implement the necessary logic for the disc. Pin
numbers for both the SA400 and FD1771B-01 are provided in the table.
Figure 2 shows a "pin-out" of the controller chip with all 40 pins of
the controller chip and their corresponding signals.

FD1771B-01 Signal (pin) SA400 Signal (pin)

HLT (32)
RDY/HLT(23)
STEP (15)

from expansion interface
STEP PULSE (20)

FD1771B-01 Signal (pin) SA400 Signal (pin)

DIRC (16) ----> DIRECTION SEL (18)
WE (30) ----> WRITE GATE (24)
WD (31) ----> WRITE DATA (22)
FDDATA (27) <---- READ DATA (30)
WPRT (36) <---- WRITE PROTECT (28)
IP (35) <---- INDEX PULSE (8)
TR00 (34) <---- TRACK ZERO (26)

A set of other signals for the FD1771B-01 are not used in the

TRS-80 implementation. Examples of these are the factory test input
(pin 22) and signals connected with an external data separator (pin
25).

HLD (28) Head load
3FM (18) Three phase motor select
TEST (22) Test input
XTDS (25) External data separator
FDCLOCK (26) Floppy disc clock
 (external separator)
WF (33) Write fault
DINT (37) Disc initialization

FD1771B-01 Signal (pin) Description

Figure 2. FD1771B-01 Pin-Out

TRS-80 to FD1771B-01 Signals

Both commands and data are passed between the TRS-80 and

FD1771B-01 by DAL7 through DAL0 (most significant to least
significant). This is a bidirectional bus that feeds the data,
sector, track, command, and status registers depending upon the
command sent out by the TRS-80. The DAL7 through DAL0 lines are
connected to (or gated) the data bus of the TRS-80, D7 through D0,
respectively.

Input signals RE and WE (pins 4 and 2) are read and write signals
from the TRS-80. Each read and write operation to the FD1771B-01
transfers one byte of data, command, or status between the FD1771B-01
and Z-80 of the cpu. A0 and A1 (pins 5 and 6) interface directly to A0
and Al of the TRS-80 and control which type of data transfer is to be
made. If a read or write is performed to the FD1771B-01, the following
actions take place, dependent upon the state of A0 and Al. These
transfers will be described in more detail later in this text.

Al A0 Read Action Write Action

0 0 Read status Write command
0 1 Read track Write track
1 0 Read sector Write sector
1 1 Read data Write data

Signal INTRQ (Interrupt Request) would normally be used to
generate an interrupt in many computers, but in the RS implementa-
tion is used to signal a ready status to the TRS-80 by being tied to
data bus line D6. Signal INTRQ goes high at the end of any operation
performed by the FD1771B-01 and is reset when a new command to the
FD1771B-01 is issued.

Signal MR is "Master Reset" and is used to initialize the
FD1771B-01 to an initial condition.

Another set of signals commonly used for interfacing are
not connected or deactivated in this configuration.
They are shown below:

 Signal (pin) Description

 DRQ (38) No connection. Data Request.
 TG43 (29) Track Greater Than 43.N/C.
 PH3 (17) Phase 3. N/C.
 CS (3) Chip Select. Ground.

Commands
Eleven commands may be sent to the FD1771B-01 by the TRS-80. They

were previously listed. The first group of commands are related to
motor positioning. They are RESTORE, SEEK, STEP-IN, and STEP-OUT. All
are sent to the FD1771B-01 by a write A0=0, A1=0 output. In the TRS-
80, this would be accomplished by loading a cpu

register with a byte defining the command value and performing a
"store" instruction to address 37ECH. The 37ECH location is actually
the disc address, and the least significant two bits of the
"C" are 00, which specifies the command register, Signal WE is
active because a "store" instruction is being executed, and the write
causes the command byte to be transferred from the cpu register to the
command register in the FD1771B-01.

RESTORE is issued by outputting a data byte of

The RESTORE moves the disc head to a position over track 0. There are
three fields in the RESTORE command. The first field, H, may be a 1
or 0 in the TRS-80 system as it causes no action (the head
is loaded at motor on). In other implementations it unloads or loads the
head before a command. The second field is a verify field and may be a
0 or 1. It is used to verify that the track address read from the
diskette is the same as the current track register contents. The third
field (two bits) is used to vary the stepping rate of the head. The proper
rate for TRS-80 operation with the SA400 is the stepping rate defined
by 112. For discussion purposes, we'll assume that the normal coding of
these fields in the TRS-80 will be 00112. These three fields are also used
in the other four commands in this group (SEEK, STEP, STEP-IN, and STEP-OUT)
and we'll assume a 00112 configuration here also.

The SEEK command must be preceded by an output to the data register
to load the data register with the desired track number. (The output
would be performed by a "store" to location 37EFH to store a track number
in a cpu register.) When a SEEK command is issued after the track number has
been stored in the data register, the FD1771B-01 will automatically
position the head over the proper track by comparing the contents of the
data register with the current track register and issuing an appropriate
series of STEP PULSES in the proper DIRECTION. The SEEK command format
follows:

The STEP command causes one step of the head to occur. The
direction of the step, in or out, is the same as the previous STEP
command. The STEP command does have an active field, U. The U field
determines whether the track register is updated after the step. If
U=1, the track register is incremented or decremented by one,
dependent upon the direction of the step. If U=0, no adjustment is
made. The STEP format is

The STEP-IN and STEP-OUT commands are similar to the STEP, except
that the direction is explicit. The U field operates as in the STEP.

To reiterate the commands in the first group, then, RESTORE finds
track 0, SEEK finds a specified track, STEP, STEP-IN, and STEP-OUT move
one track. The STEP commands have a field specifying whether the track
register should be updated automatically. Generally this field will be
set. The verify field may be optionally used all commands to verify
that the track # read from diskette matches that in the controller
track register.

The second group of the eleven in the FD1771B-01 are related

to reading and writing data. There are two of these - READ COMMAND
and WRITE COMMAND.

User data is generally transferred a sector's worth at a time, or
256 bytes. In general, data may be transferred under register I/O or
Direct Memory Access (DMA) I/O. The latter operation allows an I/0
device controller to transfer data between memory and the I/0 device
independently of the cpu, and requires some fairly involved logic to
sequence data transfer while "locking" out (suspending) cpu operation.
DMA has the advantage of permitting the cpu to execute program
instructions while the I/O transfers are taking place. The method used
in the TRS-80 is register I/O. This implementation works, but at the
cost of cpu overhead. The cpu is continually "I/O bound" waiting in a
"status loop" to transfer the next byte of data when the controller
says it is ready (in this case the controller is the FD1771B-01), To
"keep up with" the disc, the controller must be able to transfer one
sector's worth in about 1/10th revolution, or 20 msec., which is
equivalent to transferring a byte every 78 microseconds. As normal
instruction times are about 8 microseconds in the TRS-80, the Z-80 cpu
can indeed keep up with data flowing from or to the disc. We will see
the exact instruction sequence later in the book.

Prior to the read or write, the TRS-80 program must load the
sector register with the sector number to be read or written, Also, of
course, the head must be positioned over the proper track by a RESTORE,
SEEK, or series of STEP commands. The sector register is loaded by a
"store" instruction with an address of 37EFH (A1=0,A0=1) which stores a
sector number from a cpu register into the FD1771B-01 sector register.
The format of the READ and WRITE commands are shown below. As in the
case of the positioning commands in the first group, the command is
written to the FD1771B-01 command register by execution of a "store"
instruction with an address of 37ECH (A1=0,A0=0).

There are three fields in the READ command and four fields in
the WRITE command. The M field in both is used to enable the read

or write of multiple sectors or records. If M=0 a single record will
be transferred. If M=1 more than one sector will be transferred. The
usual case for the TRS-80 is to transfer only one sector, however, 2
to 10 sectors could also be transferred by setting this bit. The B
field of the READ or WRITE is always set to a 1 to signify IBM-
compatible disc format, which is simply a de facto standard
established by IBM. Field E controls a 10 msec delay which enables
the head to engage before the read or write. As the head is always
engaged before the read or write from motor turn on time (the HLD
field is not used), the E field could be a one or zero. We'll use
the 10 msec delay only because Radio Shack uses it.

The A1/A0 fields of the WRITE command control writing of the data

address mark on the diskette. The standard IBM format for this is a
hexadecimal FB, which is specified by a field of 002.

Data is written or read to the diskette by continuously mon-

itoring (reading) the status from the FD1771B-01. One of the status
bits is DRQ, or Data Request, which signifies either that the data
register contains the next byte of read data or has been "emptied" of
the last byte of write data. Examples of programming for reads and
writes will be shown later.

There are three commands in the next group, related to disc

formatting. They are: READ ADDRESS, READ TRACK, and WRITE TRACK.
As we mentioned previously, disc formatting initializes the diskette
to a standardized (IBM) format with identification data for track and
sector number, gaps between sectors, CRC (checksum) characters, and
other data. Writing new data to the diskette is done in the 256-byte
area reserved for user data. The complete format of TRS-80 diskettes
is given in Appendix B.

READ ADDRESS is a command that reads six identification bytes

from the diskette from the next encountered id field. Each time one
of the bytes is read the DRQ (Data Request) bit is set in the
status, so that the TRS-80 program can read it from the FD1771B-01
by a "load" 37EFH instruction. The six bytes read are as follows:

1. Track address, 0 through 34
2. Zeros
3. Sector address, 0 through 9
4. Sector length
5. CRC character 1
6. CRC character 2

These six bytes correspond to the bytes given in the appendix
for track format. The READ ADDRESS command could be performed at any
time, and not just during a formatting operation. The command format
for a READ ADDRESS is shown below:

The READ TRACK command reads an entire track of the current
diskette. Not only user data, but identification data is read as well.
As in the case of READing user data, the Data Request bit is used to
indicate when the next byte of data is ready to be transferred from
the FD1771B-01 data register to the Z-80 cpu. Gaps on the diskette are
also read and transferred. The READ TRACK command has one field, the S
field. If S=0, the accumulation of bytes is synchronized to each
address mark encountered, so that the controller does not "get lost"
in reading the track full of data. If S=1 no synchronization is done.
The READ TRACK will primarily be done during the formatting process to
verify formatting data, although it could be done at any time. The
format of the READ TRACK is:

WRITE TRACK is used to format the diskette according to the
format shown in Appendix B. Data in the given format is presented to
the FD1771B-01 one byte at a time by the program. The Data Request bit
is continually checked to see when the controller chip is ready for
the next data byte. Address marks are written to the diskette by the
controller chip upon detection of certain data patterns sent by the
cpu. A CRC (cyclical redundancy check type of checksum) is written to
the disc in the same fashion. The codes for these actions are:

Data Pattern Description Clock Mark

F7H Write CRC FFH
FBH Data Address C7H

Mark
FCH Index Address D7H

Mark (not used)
FEH ID Address C7

Mark

Obviously no user data is written to the diskette during the
WRITE TRACK OPERATION. The user area is filled with E5H or some
other non-conflicting pattern (the bytes above would generate a CRC

i i

There is one command in the last group of eleven commands.
The FORCE INTERRUPT command is used to terminate the current command
and to generate an "interrupt" in many systems. In the TRS-80 a FORCE
INTERRUPT command also causes an interrupt (if interrupts are
"enabled"). Termination of the current command and an interrupt occur
when one of four conditions occur as specified in a four-bit
field in the FORCE INTERRUPT COMMAND.

The four-bit field is defined by I3, I2, I1, and I0. Each

specifies a different condition for the termination, as follows:

10 = 1, terminate on not ready to ready transition
I1 = 1, terminate on ready to not ready transition
I2 = 1, terminate on next index pulse
I3 = 1, immediate terminate/interrupt

If none of the above conditions is specified, there is no interrupt but
the command is terminated (I0=I1=I2=I3=0). Why have so many conditions?
Why not? It is even possible that all might even be useful. For
practical purposes, however, probably only a FORCE INTERRUPT with no
interrupt (110100002) would be used, and that only to terminate a read
or write of multiple sectors after the desired number of sectors. The
FD1771B-01 is designed to cover many contingencies, but only a portion
of all possible commands or conditions will be used in the typical
microcomputer installation.

Registers

We have seen how the FD1771B-01 registers are used in the
course of positioning and transfer of data. A recap of their use
follows:

Command register: Used to hold command to be acted upon.
Command is written into the register from a
cpu register,

Track register: May be automatically updated with each STEP.
May be read by cpu.

Sector register: Setup with sector number prior to a read or
write. May be read by cpu.

Data register: Used to hold data passing between the cpu and
disc during reads or writes. Used con-
tinuously as data is transferred one byte at
a time.

The controller register not described above is the Status Reg-

ister. The Status Register holds various status conditions during
different operations. For a positioning command (RESTORE, SEEK,
STEP, STEP-IN, STEP-OUT), the Status Register holds status as follows:

Not ready (bit 7), is always false (ready) when the disc

is being addressed, Write protect (bit 6) indicates that the diskette
write protect notch is covered, read engaged (bit 5) is always true
when a disc operation is being performed. Seek error and CRC error are
active if verification was used. Bit 4 is set on track not found.
Track 0 (bit 2) is set when the head is over track 0. index (bit 1) is
true when the index mark is detected from the disc. Busy (bit 0) is set
when a command is in process and reset when the command is completed.
What status bits would normally be used in the TRS-80 for positioning
commands? Certainly the busy bit. The busy bit would be checked prior
to issuing any new command to see if the controller was engaged in a
previous activity. Any new action would be delayed until the busy bit
was reset. Track 0 might also be checked after issuing a RESTORE
operation, to see that the RESTORE was successfully completed.

During a READ or WRITE command, the status register holds
status as follows:

For a READ or WRITE, the CRC refers to-either ID data or to
user data (status bit 2). This bit will be set to indicate invalid
data. Lost data (3), means that the cpu did not respond fast enough to
keep up with the data being transferred between the cpu and disc. If
this condition is true, the bit is set. This should never occur except
in catastrophic cases. Record not fond indicates that the desired
track or sector or both was not found. This bit (4) would be set if
this error condition occurred (for example, loading an invalid sector
number prior to the read). Data Request, DRQ bit 1, indicates that the
buffer is empty on a write or full on a read. Busy (bit 0) is set
during the time the READ or WRITE is active. Not Ready (bit 7) is
always false (ready) when the disc is being addressed. On a WRITE, bit
6 is set for a write protect condition, while bit 5 indicates a write
fault. On a READ these bits should be a 012 to indicate a 256-byte
length. The chief bits used for status would be busy and DRQ. Busy
would be tested by the program to ensure that a previous operation was
over. DRQ would continually be checked for the next data byte to be
transferred. The other bits would be used to indicate fault
conditions.

Status is also available during the formatting type com-
mands of READ ADDRESS, READ TRACK, and WRITE TRACK. The status
bits would have the same meaning as in the other commands. Status

during one of these three commands is as follows:

Status Bit READ ADDRESS READ TRACK WRITE TRACK

7 not ready not ready not ready
6 0 0 write protect
5 0 0 write fault
4 id not fnd 0 0
3 CRC error 0 0
2 lost address lost data lost data
1 DRQ DRQ DRQ
0 busy busy busy

This chapter has discussed the operation of the WD FD1771B-01,

primarily in terms of what internal operations are performed, and how
it interfaces to the Shugart SA400. The next chapter will show how the
TRS-80 communicates to the FD1771B-01 to enable the program to perform
positioning operations and reads and writes. The last chapter will show
the sequence of operations to perform in a program to accomplish useful
work with the disc.

26

Chapter 4
Expansion Interface

A schematic of the expansion interface pertaining to disc

is shown in figure 1. There are several sections to be considered in
the implementation. They are

1. Disc selection
2. Motor on circuitry
3. Addressing
4. FD1771B-01 functions
5. Interrupt circuitry

Disc Addressing

There are two general addresses associated with the disc(s). The
address used to select the drive is 37EXH, where X represents 1
through 8. The 37E0H "device select" signal is decoded by two chips in
the expansion interface, Z32, a dual 2-line to four-line decoder
(74LS155), and Z43, a dual 2-line to four-line decoder (74LS139).
These chips are also used to generate a "controller select" signal
from address 37EXH, where X represents C, D, E, or FH.

Let's take a look at how these two select signals are generated.

The outputs from Z43 are in two groups 1Y0, 1Y1, 1Y2, and 1Y3 and 2Y0,
2Y1, 2Y2, and 2Y3. Each group is controlled by an enable signal G1 or
G2. These enables must be low for any of the outputs to be active. If
the enable is active then one of the outputs is active dependent upon
the configuration of the select bits A1/B1 or A2/B2. The select bits
define binary values 00, 01, 10, or 11 selecting Y0, Y1, Y2, or Y3, in
that order; the most significant bit is select bit B and the least
significant is select bit A. With G1 low and select bits B1=0 and A1=1,
for example, output 1Y1 would be active; or low. Note that outputs 1Y1,
1Y2, and 1Y3 are not used in disc addressing. 1Y1 is not connected, and
the other two are used to denote input of a 32K or 48K address,
respectively.

Output 1Y0 is fed back to the enable, of the second decoder on
the chip, G2. Now 1Y0 is active, or low, when RAS* is low and A15
and A14 are both zeroes. RAS* comes from the cpu and is low when
a memory request is made. The disc controller chip is "memory mapped"
and addressed as a memory location, so RAS* will be low when we are
addressing the controller chip or selecting a disc. Now with G2 low, the
outputs at 2Y0, 2Y1, 2Y2, and 2Y3 reflect the configuration of inputs B2
and A2. 2Y1, 2Y2, and 2Y3 are not used. 2Y0 will be active when A2 and
B2 are both low. Since B2 is directly connected to All, All must be a
zero for 2Y0. A2 is low when address lines A5, A6, A7, A8, A9, A10, A12,
and A13 are true, causing the output of NAND gate Z42 to go low. Output
2Y0 will be active (low) therefore, when the following conditions exist:

Output 2Y0 feeds chip Z32 enables G1 and G2. This chip acts much

the same as Z43, except that there are two additional enables, C1 and
C2. When C1 is high, then outputs 1Y0, 1Y1, 1Y2, and 1Y3 are enabled.
When C2 is low, then outputs 2Y0, 2Y1, 2Y2, and 2Y3 are enabled. A
common two select bits A and B determine which of the four outputs
will be active. Now C1 and C2 are connected to two cpu signals RD* and
WR*, respectively. These signals are active (low) when a read or write
is being performed. The read and write are mutually exclusive, of
course, and are used for addressing memory and I/0 devices. When a
read is being performed, signal RD* will be low and input C1 will be
high (Z23 inverts the RD* signal) and one of four outputs 1Y0, 1Y1,
1Y2, or 1Y3 will be active or low. When a write is being done, C2 will
be low and one of the outputs 2Y0, 2Y1, 2Y2, or 2Y3 will be active or
low. Now B and A, the two select signals, are directly connected to
address lines A3 and A2. Bearing this in mind, the following table
shows how the eight outputs of Z32 decode:

Address Read Write Pin Signal
37E0 Y N 1Y0 37E0 Read
37E4 Y N 1Y1 no connection
37E8 Y N 1Y2 37E8 Read (printer)
37EC Y N 1Y3 37EC Read
37E0 N Y 2Y0 37E0 Write
37E4 N Y 2Y1 CSW Cassette latch
37E8 N Y 2Y2 37E8 Write (printer)
37EC N Y 2Y3 37EC Write

The above table indicates the general address for activating each

of the eight signals. In fact, since A1 and A0 are not used in
generating the address select signals, each of the eight addresses
above actually represents a block of four addresses. Address 37EC,
for example, represents addresses 37EC, 37ED, 37EE, and 37EFH. The
manner in which these address selects are used will be discussed
below.

Disc Selection

Four signals are shown on figure 1, and represent the disc select
signals for disc drives 1, 2, 3, and 4. Only one of these signals should
be active at any time. These signals are output from a four bit flip-
flop Z36 (74LS175). The address of this flip-flop is 37E0H. When a write
is done to address 37E0H, the four low-order bits on the data bus, D3
through D0, are clocked into the four bits of Z36 by the 37E0 write
signal. Loading a register with 1, 2, 4, or 8, and performing a "store"
to location 37E0H, then, selects disc drive 1, 2, 3, or 4, respectively.

Motor On Circuitry

Whenever a disc drive is selected, the 37E0H signal also goes

to chip Z29. Z29 is a "one-shot" that provides a short pulse for
a predetermined period of time, in this case approximately 3 seconds.
The pulse from Z29 is used to enable signal MOTOR ON, which turns on

the disc drive motor in preparation for disc activity. After three
seconds or so the motor will automatically turn off if no further 37E0
write is performed. Another related action performed by the 37E0 write
is generation of a "ready" signal to the FD1771B-01. Inputs HLT and RDY
are used by the FD1771B-01 to determine whether the head is loaded and
the disc drive is ready for activity. In the TRS-80 implementation,
these inputs are true only when one of the drives has been selected. If
one drive has been selected, then one of the four flip-flops in Z36 is
set, and the corresponding "not Q" output is a zero, making the common
HLT/RDY signal a high. This signal goes low when Z36 is cleared by Z29
at the end of the delay.

FD1771B-01 Functions

The address of the FD1771B-01 is 37ECH, as explained above. Whenever
a read or write is performed to memory address 37EC, data flows between
the cpu and FD1771B-01, The register within the FD1771B01 that is being
addressed is determined by address bits 1 and 0. These two address bits
control the operation, as described under "TRS-80 to FD1771B-01 Signals"
in the previous chapter. To read status from the FD1771B-01, for example,
a read to address 37E0 would be performed. A write to the sector register
would be accomplished by a write to address 37EEH (A1=1, A0=0). The read
and write signals to the FD1771B-01 are signals 37EC read and 37EC write
from the decoder chip, which, of course, are true for reads and writes in
addresses 37EC through 37EFH.

Data is sent between the FD1771B-01 and cpu along the data bus, D7

through D0. Signal 37EC read is used to gate data from the controller to
the cpu by enabling devices Z33 and Z38; signal 37EC write is used to gate
data from the cpu to controller by enabling chips Z33 and Z37.

Interrupt Circuitry

At the completion of any FD1771B-01 operation, the controller

generates an interrupt signal called INTRQ. In the TRS-80, this signal is
gated onto the data bus by signal 37E0 read, along with the real-time-
clock signal (INTRQ goes to D7 while RTC goes to D6). INTRQ also is routed
to Z35 as one of two inputs that eventually set Z28 to generate an
interrupt signal to the cpu. Since INTRQ is not only set to signal the end
of a normal disc operation, but is also set to denote an unsuccessful disc
operation, INTRQ could cause an interrupt in the cpu for abnormal
conditions, providing that the interrupts were enabled (EI instruction
executed). At this time of writing, not enough is known about the internal
workings of TRS DOS to report on how disc interrupts are handled, if at
all. Disc operations do not require interrupts, as we shall see in the
next chapter, and for the time being we shall leave this question
unresolved. An addendum describing disc interrupt action will be provided
later upon request.

32

Chapter 5

Disc Programming

The rudimentary set of commands that can be used on the disc(s) in
the TRS-80 are the commands described in chapter 3. No other basic disc
operations are possible. At this level, then, the user can only perform
a restore, seek, step head, read sector, write sector, read address,
read track, write track, and force interrupt. Normally the read address,
read track, and write track are used only for formatting the diskette,
so the general purpose commands are only restore, seek, step head, read
sector, write sector, and an infrequent force interrupt (which resets
the controller).

Just as Z-80 instructions may be combined to implement level I
or level II BASIC, rudimentary disc commands may be combined to implement
a sophisticated disc operating system or disc file manage. Sequential or
random access methods may be implemented, files may be defined in various
types of directories, sorts and merges may be performed on records, and
disc accesses may be optimized for access speed. It is beyond the scope
of this text to describe the procedures for implementing a disc operating
system or file manage, just as a text on Z-80 programming would not show
the implementation of a BASIC interpreter. What will be shown, however,
are methods for performing individual operations such as restores and
reads which may then be combined into user programs as building blocks
for more advanced operations.

Is it possible to perform disc operations using BASIC? The answer

is that the head positioning operations such as restore, steps and seeks
may indeed be implemented using BASIC, but that reads and writes may
not. Reading and writing sectors (and tracks) are implemented in the
TRS-80 under programmed I/0 operations. Each individual byte of data
transferred between the cpu and disc is handled in a cpu register. The
program must continually test the disc status to see whether the disc is
ready for the next data byte or whether the disc has the next data byte
available, Since bytes become available at the rate of one every 64
microseconds or so, the program must be fast enough to keep pace with
this data rate. Fast loops within a BASIC program might require 3
milliseconds, which is many times slower than the speed required to keep
pace with reads or writes. Read or write operations, then, must be
performed under assembly language software routines.

Head Positioning

To become familiar with the sequence of operations for disc functions,
let's look at some BASIC head positioning routines, These routines may be
converted to assembly-language routines quite simply, or left as BASIC
routines.

First of all we'll do a simple write to address 37E0H, This
operation should select a drive and turn on the disc drive motor for
about three seconds.

POKE 14304,0 37E0H address

The above command stores a zero value in the four bits of Z36,
selecting no drive, and simultaneously turns the motor of the drive on
for about three seconds. A value other than zero could be used to
select the drive; a 1, 2, 4, or 8 would select drive 1, 2, 3, or 4
respectively. The only effect of the select would be to bring down the
select line for the appropriate drive.

Now put a protected diskette in the drive. The following routine
will select drive 1 and then read the status from the drive, As long as
the drive is selected (the select bits are cleared when Z29 and the
motor goes off), we will get back status from drive 1. The status
should tell us that the diskette is protected (see chapter 3), and
should also tell us if sector 0 has just passed the index pulse
detector. Since sector zero comes around every 200 milliseconds or so,
we'll not see the sector zero status every time due to the timing of
the BASIC loop and the short "window" for sector 0. When the drive is
"deselected" after three seconds, a status of 12810 will be printed,
indicating a "not ready" condition. Status during the selected time
will be 6810 or 6410, indicating write protect and possibly that the
head is over track zero.

100 POKE 14304,1 select
200 A=PEEK(14316) get status
250 IF (A AND 2)=2 PRINT "SECTOR 0" test sector 0
300 PRINT A print
400 GOTO 200 loop on status

Now take off the protect label or put an unprotected diskette in

the drive and repeat the above program. Status during the select time
should indicate disc not protected (0 or 4).

Now we'll try a more advanced operation, The following program

selects the drive, does a restore to move the head to track 0, reads
back the track register and prints the value (should be zero), steps in
the head one track, reads the track register and prints it (should be
1), and loops back to the track register read. The command in 200 does a
restore at a slow stepping rate and the command in 600 does a step in
with automatic update and slow stepping rate. The status check at 300
and 400 tests to see whether the disc is busy or whether it is done
performing the restore. This busy check will be found on virtually every
command. Value 14317 addresses the track register in the PEEK (a read).

 100 POKE 14304,1 select
 200 POKE 14316,3 restore
 300 A=PEEK(14316) get status
 400 IF (A AND 1)<>0 GOTO 300 test busy
 500 A=PEEK(14317) get track register
 550 PRINT A print
 570 FOR I=0 TO 300:NEXT wait for display

 600 POKE 14316,83 step in
 700 A=PEEK(14317) get track register
 800 PRINT A print
 900 GOTO 700 loop

In the above program the FD1771B-01 automatically incremented the
track register when the step in was performed. Unless the update bit
is specified, that update will not be done. The following program
steps in from track 0 after a restore and prints the track register
each time. A delay is put in at 760 for display purposes.

100 POKE 14304,1 select
200 POKE 14316,3 restore command
300 A=PEEK(14316) get status
400 IF (A AND 1)<>0 GOTO 300 test busy
500 A=PEEK(14317) get track register
550 PRINT A print
570 FOR I=0 TO 300:NEXT delay for display
600 POKE 14304,1 select
610 POKE 14316, 83 step in
700 A=PEEK(14316) get status
750 IF (A AND 1)<>0 GOTO 700 test busy
760 FOR I=0 TO 300:NEXT delay for display
770 A=PEEK(14317) get track register
800 PRINT A print
900 IF A < 35 GOTO 600 keep on steppin'

To observe what happens when the update bit is not set in the

step in command, substitute a 67 for the 83 in 610. Don't let this
continue too long, however, as some types of drives have been known to
step off the end of the earth (or at least the step mechanism);
a few steps are fine, however, and will illustrate the update of the
track.

The stepping rate used for the SA400 is 40 milliseconds, secified

by a 112 in the step rate field in the positioning commands. This is
the rate that should be used normally. For illustration of this field's
use, however, the following program may be used to step in at a faster
rate. Use 80 for a fast rate and 83 for a slow rate in 610.

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 A=PEEK(14316) get status
400 IF (A AND 1)<>0 GOTO 300 test busy
600 POKE 14304,1 select
610 POKE 14316,80 step in
700 A=PEEK(14316) get status
770 A=PEEK(14317) get track
800 PRINT A print
900 IF A < 35 GOTO 600 loop

The above programs have used a step in command. Let's use

the step out command and clean up some of the code. The following
program uses subroutine 1000 as a busy check. A return is made only
when the previous command is done. Subroutine 2000 performs an op-
eration determined by V, waits for done, and then prints the track
register. The program steps into track 35 and then steps out to track
0.

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 GOSUB 1000 test done
400 V=83 step in
500 GOSUB 2000 output and test
600 IF A < 35 GOTO 500 step in til end
700 V=115 step out
800 GOSUB 2000 output and test
900 IF A<>0 GOTO 800 step out til end
950 END done
1000 A=PEEK(14316) get status
1100 IF (A AND 1)<> 0 GOTO 1000 go if busy
1200 RETURN return
2000 POKE 14304,1 select
2050 POKE 14316,V output command
2100 GOSUB 1000 test done
2200 A=PEEK(14317) get track register
2300 PRINT A print
2400 RETURN return

One question the reader may be asking - why select each time

a step is done? Don't forget that the motor stays on only for about
three seconds. If the entire disc operation takes longer than that, the
drive is automatically deselected. It's a good idea, therefore, to
select before each new disc operation (command) to keep the disc in a
ready condition. This applies not only to BASIC code, but to assembly
language code as well.

We've seen the step in and step out command use. Now let's
use the step from last direction. As you will recall, this command will
cause the FD1771B-01 to step in the same direction as the previous
command.

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 GOSUB 1000 test done
400 POKE 14316,83 step in
500 GOSUB 1000 test done
600 FOR I=1 TO 34 setup loop
650 POKE 14304,1 select
700 POKE 14316,51 step from last dir
800 GOSUB 1000 test done
850 A=PEEK(14317) get track
860 PRINT A print
900 NEXT loop
950 END done

1000 A=PEEK(14316) get status
1100 IF (A AND 1)<> 0 GOTO 1000 test done
1200 RETURN return

The only other positioning command we have not used is seek.

The following program seeks from any input value. Obviously valid
values are 0 through 34 for the track. The seek assumes that the data
register of the FD1771B-01 has been loaded with the value representing
the desired track. This is done at 500. When the seek command is
executed at 700 the FD1771B-01 automatically steps in or out to
position the head over the desired track. The track register must, of
course, have the correct current track number for a proper seek.

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 GOSUB 2000 test done
350 INPUT V input track #
400 POKE 14304,1 select
500 POKE 14319,V output track #
600 GOSUB 2000 test done
700 POKE 14316,19 seek command
800 GOSUB 2000 test done
900 A=PEEK(14317) get track
1000 PRINT A print
1050 A=PEEK(14316) get status
1060 PRINT A print
1100 GOTO 350 loop on input
2000 A=PEEK(14316) get status
2100 IF (A AND 1)<>0 GOTO 2000 test done
2200 RETURN return if done

The above routines illustrate the use of the positioning commands.

Assembly language implementation would follow the above approaches (we
shall see assembly language routines later in this chapter). The
important thing in the use of the positioning commands is to know where
you are. The reference point is track zero to which the head may always
be positioned. Although the FD1771B-01 should not fail to update the
track register properly, that gaelic law applies.

Reading/Writing

To illustrate reading and writing of sectors, we'll use code
from a popular microcomputer. The code is unsophisticated and can
be accessed using a symbolic disassembler such as Small Systems Soft-
ware RSM-1S.

One of the first things that Level II BASIC does is to test
whether a disc is present. If a disc is present, then Level II as-
sumes that a program is present on sector 0 track 0 and reads that
program in. The program, of course, is a portion of TRSDOS. The
process of reading in the program is called "bootstrapping" or
"booting in" and is a way for the system to pull itself up by it's
own bootstraps after power up or RESET. If a disc is not present,

of course, or if BREAK is pressed on power up, Level II goes in-
stead to Level II BASIC, bypassing the disc.

If we examine the first three instructions in Level II BASIC
we find

0000 F3 DI disable interrupts
0001 AF XOR A 0 to A
0002 C3 74 06 JP 0674 jump to loc 0674H

This sequence is always entered on power up, as a power up causes

execution to start at location 0. The first instruction disables all
external interrupts except for the non-maskable interrupt. The A
register is loaded with 0 and a jump is then made to location 0674H,

At location 0674H we find the "disc boot" routine shown below in
figure 1. The disc boot starts at 0696H after other initialization.
The disc boot performs the following functions:

1. Read disc status (0696H)
2. Test for status bits from disc (069AH)
3. If no status for disc go to location 0075H (069CH)
4. Else: Select drive 1 by outputting 1 to select
 latch address 37E1H (06A1H)
5. Send restore command (3) to disc command register
 (address 37EC - 06AAH).
6. Delay 65536 counts (0060 is a subroutine to delay
 by count in BC register pair). This is done to
 let the motor come up to speed and for head move-
 ment.
7. Test busy bit of status (06B2H)
8. Loop to 7 if busy
9. Else: Send 0 to sector register by outputting to
 location 37EEH. This prepares the disc to read
 sector 0 of track 0.
10. Send 8CH read command by outputting 8C to location
 37E0 (06BFH). Read sector 0, track 0, byte 0.
11. Test bit 1 of the status register (DRQ). If DRQ
 is not zero, the next byte of data is not present
 in the FD1771B-01 data register and step 11 is
 again executed. Else: Data is present and the
 data is read into the A register (06C4H) and trans-
 ferred to the 4200H area (06C5H).
12. The BC pointer is bumped by one (06C4H) to point
 to the next destination in the 4200 area (06C6H).
13. If C=0 steps 11 through 13 are repeated to trans-
 fer 256 bytes of data from sector 0 to 4200H
 through 42FFH.
14. A jump is made to TRSDOS start at 4200H (actually
 a TRSDOS loader).

Note that in the above routine all I/0 is done on a "programmed

I/O" basis. Reading a byte of data is done by checking the DRQ bit to
see if a new byte of data has been assembled from the serial bit

0696 3A EC 37 LD A,(37EC) get' disc status
0699 3C INC A
069A FE 02 CP 02
069C DA 75 00 JP C,0075 go if no disc
069F 3E 01 LD A,01 for drive 1
06A1 32 El 37 LD (37E1),A select drive 1
06A4 21 EC 37 LD HL, 37EC 1771 address comnds
06A7 11 EF 37 LD DE, 37EF data reg address
06AA 36 03 LD (HL),03 restore command
06AC 01 00 00 LD BC,0000 delay 64K counts
06AF CD 60 00 CALL 0060
06B2 CB 46 LOOP1 BIT 0,(HL) test busy
06B4 20 FC JR NZ,LOOP1 go if still busy
06B6 AF XOR A zero to A
06B7 32 EE 37 LD (37EE),A 0 to sector reg
06BA 01 00 42 LD BC,4200
06BD 3E 8C LD A,8C read command
06BF 77 LD (HL),A read sector 0
06C0 CB 4E LOOP2 BIT 1, (HL) test DRQ
06C2 28 FC JR Z,LOOP2 go if no data avail
06C4 1A LD A,(DE) get next byte
06C5 02 LD (BC),A transfer data
06C6 0C INC C bump buffer pointer
06C7 20 F7 JR NZ,LOOP2 go if not 256 bytes
06C9 C3 00 42 JP 4200 transfer to DOS loader

Figure 1. Disc Bootstrap Routine

(At start (HL)=37ECH and (BC)=buffer pointer)
52C6 11 EF 37 LD DE,37EF data register address
52C9 C5 PUSH BC waste time
52CA C1 POP BC waste time
52CB 18 0B JR 52D8 start read
52CD 0F BSYTS RRCA busy bit to C
52CE 30 0A JR NC,52DA go if not busy
52D0 7E LOOP LD A,(HL) get status
52D1 CB 4F BIT 1,A test DRQ
52D3 28 F8 JR Z, BSYTS go if no data
52D5 1A LD A,(DE) get one byte
52D6 02 LD (BC),A store in buffer
52D7 03 INC BC bump buffer pntr
52D8 18 F6 JR LOOP loop for next byte
52DA 7E LD A,(HL) get status
52DB E6 5C AND 5C test type, nfnd,CRC,lost
52DD D1 RET Z go if no errors
52DE 36 D0 LD (HL),D0 force int (reset)
52E0 C9 RET return

Figure 2. Generalized Disc Read

stream. If so, a byte is read into A and then transferred to the 4200H
area (200H bytes above the start of RAM. The read resets the DRQ bit
and the process is repeated 256 times to read the sector of data.

This simple bootstrap is a common brute force approach to in-
itializing a system. No checks are made on the validity of the
data in this routine, but chances are good the operation will go off
without a hitch. If not, another power up will repeat the process.

If a RESET is performed, the same test for disc presence is

made at location 66H and a jump made to location 0000H if the disc is
there, where a transfer to the boot strap routine is made.

0066 31 00 06 LD SP,0600 reset
0069 3A EC 37 LD A,(37EC) get status
006C 3C INC A
006D FE 02 CP 02 test for disc status
006F D2 00 00 JP NC,0000 go if disc there

The read command in the above code is an 8CH. As previously

described, the read fields should be set for a single sector (bit 4=0,
IBM format (bit 3=1), and enable head load and 10 msec delay (bit 2=1).
This command code should always be used, with the exception of reading
multiple sectors. Note also in the above code that it does take time
for the motor to get up to speed (less than a second) and that this
should be a time-out in the program. Continuing disc operations should
always perform a select to keep the motor on.

Figure 2 shows the busy loop of another read. This read tests the

DRQ as the previous one, but prior to the test of DRQ also tests the
busy bit. The busy bit will be reset when the read operation is com-
pleted. For a single sector this will be after 256 bytes, while for
multiple sectors this will be at the end of the track, If the busy bit
is set the next byte of data is obtained and stored away. If the busy
bit is not set a final status check is made and the value of 5C is used
to test for type, not found, CRC, or lost data status. Any of these bits
means that an error condition exists and the read was terminated
improperly. In this case a force interrupt is used to reset the
controller before the return is made. The type bit means that a data
address mark other than FB or F9 was encountered, not found indicates
track and sector were not found, CRC indicates invalid data, and lost
data means that the cpu did not respond in time to the next byte of
data.

At this point it may be wise to talk about some of the idiosyn-

cracies of the TRS-80 disc implementation. Although nothing is men-
tioned in the FD1771B-01 documentation, code in the RS system uses "time
wasting instructions" after certain disc I/0 commands. Evidentally some
settling time is required after execution of FD1771B-01 commands. This
is a type of thing usually found out after debugging and may reflect
specs not stated in FD1771B-01 documentation, system design problems, or
code put in "just to be safe". A sequence such as

PUSH AF
POP AF
PUSH AF
POP AF

is typically used after a seek command. These instructions are
essentially no operations and prevent another command from directly
following an initial disc command. Additional time wasters may be
required after steps or read or write commands. Any further infor-
mation on this problem will be included in an addendum to this manual.
Another problem associated with the TRS-80 system is that some of the
code associated with the disc is presumably deliberately vague.
Therefore, do not be too surprised to find confusing routines or
structure if disassembling or investigating parts of TRSDOS.

The operations for disc sector writes is handled much the same way
as a read, except that the data register is now loaded with a data
byte, and then the DRQ is checked to determine if the controller is
ready for the next data byte. In the routine in figure 3 the busy bit
is checked as previously; it signifies the end of the write. After the
write has been completed the same status bits are checked. Bit 6 in the
write case signifies write protect in place of record type in the case
of the read.

(BC contains buffer pointer)
(HL contains status, command address 37E0)

FE61 7E SLOOP LD A,(HL) get status
FE62 0F RRCA busy bit to C
FE63 DA 60 FE JP C,SLOOP go if busy
FE66 36 A8 LD (HL),A8 write command
FE68 11 EF 37 LD DE,37EF data reg address
FE6B C5 PUSH BC waste time
FE6C C1 POP BC
FE6D C5 PUSH BC "
FE6E C1 POP BC "
FE6F C3 76 FE JP DRQCK bypass busy check
FE72 0F BSYCK RRCA busy to C
FE73 D2 82 FE JP NC, DONE go if not busy
FE76 7E DRQCK LD A,(HL) get status
FE77 CB 4F BIT 1,A test DRQ
FE79 CA 72 FE JP Z,BSYCK go if new data not req'd
FE7C 0A LD A,(BC) get next data byte
FE7D 12 LD (DE),A output to data reg
FE7E 03 INC BC bump buffer pntr
FE7F C3 76 FE JP DRQCK continue
FE82 7E DONE LD A, (HL) get status
FE83 E6 5C AND 5C test w pro, n fnd, CRC,
FE85 C8 RET Z lost
FE86 36 DO LD (HL),D0 output force int (reset)
FE88 C9 RET return

Figure 3. Generalized Disc Write

Formatting

Formatting a diskette can be performed by one of two methods.

The TRS-80 software contains a disc formatting program that auto-
matically formats a diskette to "standard" format as defined in Appendix
B. However, TRS-80 software evidently changes this standard format to a
non-standard format for protection of proprietary files. The probable
method for doing this is to essentially reformat a track dynamically
(during TRSDOS execution for new file storage). User-formatted
diskettes, on the other hand, do not contain any directories or
applications programs and cannot be used by TRSDOS. A user formatted
disc, of course, can be used for any user file manage software that
operates independently of TRSDOS.

If the user wishes to format a diskette he may do so by constru-

cting a track's worth of data arranged in the proper format and then
executing a write track command. The implementation of the write track
will be almost identical to a write sector sequence, except that an
entire track is written.

If the user wishes to read a track, the read track command can

be implemented in the same fashion as read sector. In this case, however,
the entire track will have to be read into a large buffer before the busy
bit is reset. All data on the track including gaps, data marks, and data
is read in, so this is a convenient way (if laborious) of investigating
data on any diskette track. A program to read any given track is shown
below in figure 4 (track # in location 5043).

The read address command operates similarly to a read sector
except that the six data bytes of an ID field are read from a track..
The read address would primarily be used for verification of a for-
matting operation.

Conclusion

While the above examples do not constitute a complete description
of every disc operation, it is hoped that they will provide the reader
with the basic knowledge to write his own assembly-language software
routines for the disc if he desires. By bypassing TRSDOS it is possible
to optimize disc storage space and access times and to create whatever
file manage or disc operating system software the user requires,
subject to his time and patience.

The author apologizes for some of the unanswered questions in

the text above. As more information becomes available it will be
compiled in an addendum. Readers are urged to contact the author for
questions or comments on disc operations.

5000 F3 DI disable interrupts
5001 3E 01 LD A,01 for select
5003 32 El 37 LD (37E1),A select drive 1
5006 21 00 00 LD HL,0000 delay count
5009 2D LOOP1 DEC L
500A C2 09 50 JP NZ,LOOP1
500D 25 LOOP2 DEC H
500E C2 0D 50 JP NZ,LOOP2
5011 32 El 37 LD (37E1),A select again
5014 3A 43 50 LD A,TRACK load track #
5017 32 EF 37 LD (37EF),A output to data reg
501A 21 EC 37 LD HL,37EC status, comnd address
501D 36 1B LD (HL),1B seek command
501F F5 PUSH AF waste time
5020 Fl POP AF note: drive select
5021 F5 PUSH AF positions track to
5022 F1 POP AF 0, resets trk regstr
5023 7E LD A,(HL) get status
5024 0F RRCA busy to C
5025 DA 23 50 JP C,5023 loop if busy
5028 01 00 60 LD BC,6000 buffer area
502B 36 E4 LD (HL),E4 read track command
502D C5 PUSH BC waste time
502E C1 POP BC
502F C5 PUSH BC
5030 C1 POP BC
5031 7E LOOP3 LD A,(HL) get status
5032 0F RRCA busy to C
5033 D2 03 42 JP NC,4203 return to monitor
5036 CB 47 BIT 0,A on done
5038 CA 31 50 JP Z,LOOP3 loop if not data
503B 3A EF 37 LD A,(37EF) read data
503E 02 LD (BC),A store in buffer
503F 03 INC BC bump buffer pntr
5040 C3 31 50 JP LOOP3 rtn for next byte
5043 XX TRACK DB 0 track #

Figure 4. Read Track Program

Appendix A
FD1771B-01 Commands for TRS-80

TYPE COMMAND BINARY HEX* FLAGS
I Restore 00000V11 03 V: 0 no verify, 1 verify

I Seek 00010V11 13 V: 0 no verify, 1 verify

I Step 001U0V11 33 V: 0 no verify, 1 verify
 U: 0 no update, 1 update
 track register

I Step In 010U0V11 53 V: 0 no verify, 1 verify
 U: 0 no update, 1 update
 track register

I Step Out 011U0V11 73 V: 0 no verify, 1 verify
 U: 0 no update, 1 update
 track register

II Read 100M1100 8C M: 0 single sector, 1 multi-
 ple

II Write 101M1100 AC M: 0 single sector, 1 multi-
 ple

III Read
 Address

11000100 C2

III Read
 Track

1110010S E4 S: 0 synchronize to address
 mark, 1 no synchronize

III Write
 Track

11110100 F4

IV Force
 Inter

11010000 D0 *Usual value used

Status
 BIT TYPE I READ WRITE READ

 ADDR
 READ
 TRK

 WRITE
 TRK

7 NOT RDY NOT RDY NOT RDY NOT RDY NOT RDY NOT RDY
6 WRITE REC TYPE WRITE 0 0 WRITE

 PTECT PTECT PTECT
5 HEAD EN- REC TYPE WRITE 0 0 WRITE

 GAGED FAULT FAULT
4 SEEK

 ERROR
 REC NOT
 FOUND

 REC NOT
 FOUND

 ID NOT
 FOUND

 0 0

3 CRC
 ERROR

 CRC
 ERROR

 CRC
 ERROR

 CRC
 ERROR

 0 0

2 TRK 0 LOST
 DATA

 LOST
 DATA

 LOST
 DATA

 LOST
 DATA

 LOST
 DATA

1 INDEX DRQ DRQ DRQ DRQ DRQ

0 BUSY BUSY BUSY BUSY BUSY BUSY

e

Appendix B

Notes: 1. F7 character generates two CRC check characters in
 hardware.
 2. Physical sector numbers on diskette go in this order:
 0,5,1,6,2,7,3,8,4,9 (i.e. third sector of track is 1).
 3. Above defines one track.
 4. Above defines track without files. Data files are
 rewritten for 257 data bytes per sector.
 5. Approximate number of bytes before controller
 terminates operation.

	Cover Page
	Table of Contents
	Chapter 1 - Disc Basics
	Chapter 2 - Shugart SA400
	Chapter 3 - Western Digital FD1771B-01
	Chapter 4 - Expansion Interface
	Chapter 5 - Disc Programming
	Appendix A - FD1771B-01 Commands for TRS-80
	Appendix B - Disc Format for TRS-80

